Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae
نویسندگان
چکیده
During classical conditioning, a positive or negative value is assigned to a previously neutral stimulus, thereby changing its significance for behavior. If an odor is associated with a negative stimulus, it can become repulsive. Conversely, an odor associated with a reward can become attractive. By using Drosophila larvae as a model system with minimal brain complexity, we address the question of which neurons attribute these values to odor stimuli. In insects, dopaminergic neurons are required for aversive learning, whereas octopaminergic neurons are necessary and sufficient for appetitive learning. However, it remains unclear whether two independent neuronal populations are sufficient to mediate such antagonistic values. We report the use of transgenically expressed channelrhodopsin-2, a light-activated cation channel, as a tool for optophysiological stimulation of genetically defined neuronal populations in Drosophila larvae. We demonstrate that distinct neuronal populations can be activated simply by illuminating the animals with blue light. Light-induced activation of dopaminergic neurons paired with an odor stimulus induces aversive memory formation, whereas activation of octopaminergic/tyraminergic neurons induces appetitive memory formation. These findings demonstrate that antagonistic modulatory subsystems are sufficient to substitute for aversive and appetitive reinforcement during classical conditioning.
منابع مشابه
The Role of Dopamine in Drosophila Larval Classical Olfactory Conditioning
Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neuron...
متن کاملNeuropeptide F neurons modulate sugar reward during associative olfactory learning of Drosophila larvae.
All organisms continuously have to adapt their behavior according to changes in the environment in order to survive. Experience-driven changes in behavior are usually mediated and maintained by modifications in signaling within defined brain circuits. Given the simplicity of the larval brain of Drosophila and its experimental accessibility on the genetic and behavioral level, we analyzed if Dro...
متن کاملAversive Learning and Appetitive Motivation Toggle Feed-Forward Inhibition in the Drosophila Mushroom Body
In Drosophila, negatively reinforcing dopaminergic neurons also provide the inhibitory control of satiety over appetitive memory expression. Here we show that aversive learning causes a persistent depression of the conditioned odor drive to two downstream feed-forward inhibitory GABAergic interneurons of the mushroom body, called MVP2, or mushroom body output neuron (MBON)-γ1pedc>α/β. However, ...
متن کاملDrosophila Learn Opposing Components of a Compound Food Stimulus
Dopaminergic neurons provide value signals in mammals and insects. During Drosophila olfactory learning, distinct subsets of dopaminergic neurons appear to assign either positive or negative value to odor representations in mushroom body neurons. However, it is not known how flies evaluate substances that have mixed valence. Here we show that flies form short-lived aversive olfactory memories w...
متن کاملDistinct Traces for Appetitive versus Aversive Olfactory Memories in DPM Neurons of Drosophila
The global logic used by the brain for differentially encoding positive and negative experiences remains unknown along with how such experiences are represented by collections of memory traces at the cellular level. Here we contrast the cellular memory traces that form in the dorsal paired medial (DPM) neurons of Drosophila after conditioning flies with odors associated with aversive or appetit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 16 شماره
صفحات -
تاریخ انتشار 2006